当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必赢电子游戏网站、所2020年系列学术活动(第303场):Friedrich Wagemann, Université de Nantes, FRANCE

发表于: 2020-12-01   点击: 

报告题目:Cohomology of semisimple Lie- and Leibniz algebras

报 告 人:Friedrich Wagemann,Université de Nantes, FRANCE

报告时间:2020年12月4日 15:00-16:00

报告地点:Participer à la réunion Zoom

https://univ-nantes-fr.zoom.us/j/88618299866?pwd=c0I4MHZvam9ZbWUxNG9JSXk1VWllUT09

ID de réunion : 886 1829 9866

Code secret : 239126


校内联系人:生云鹤 shengyh@jlu.edu.cn


报告摘要:

The main theorem is joint work with Jörg Feldvoss (U. South Alabama, Mobile). We start by reviewing what one knows about the cohomology of semisimple Lie algebras. Then we introduce Leibniz algebras, Leibniz bimodules and the main computational tools. Afterward we report on Ntolo-Pirashvili's theorem about the Leibniz cohomology of semisimple Lie algebras. Our final topic is the Leibniz cohomology of semisimple Leibniz algebras where we show (together with Feldvoss) that all cohomology with values in a finite dimensional bimodule is zero in degree >= 2. This shows for example that semisimple Leibniz algebras are rigid. Another application is the Ext dimension of the category of finite dimensional bimodules over a semisimple Leibniz algebra (joint work with Jean Mugniéry) which turns out to be 2.


报告人简介:

Friedrich Wagemann,法国南特大学教授,从事李理论与数学物理的研究,在Comm. Math. Phys., Adv. Math.等杂志上发表40余篇高水平学术论文。